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This file records an e-conversation between John

Baez (JB) and me (MW). It also appears as a se-

ries of posts on my blog, diagonalargument.com.
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1 Post 1

JB: I’ve lately been trying to learn about non-

standard models of Peano arithmetic. Do you

know what a “recursively saturated” model is?

They’re supposed to be important but I don’t

get the idea yet.

MW: What books and/or papers are you read-

ing? I used to know this stuff, indeed my thesis

(1980) was on existentially complete models of

arithmetic. When I looked at it a couple of years

ago, I was amazed at how much I’d forgotten.

Talk about depressing.

Anyway, I’ll toss out a few vague ideas, to see if

they help. Maybe this will be the push I need to

get back to Kaye’s book [6], or even Kossak &

Schmerl [9]. I picked them up a few months ago,

hoping to revisit my youth, but I didn’t make it
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past the prefaces.

As Hodges puts it, model theory is “algebraic

geometry minus fields”. If you have an algebraic

number r in a extension field K/F , it’s natural

to look at all the polynomials in F [x] which have

r as a root. It turns out that this is a principal

ideal, generated by the minimal polynomial.

Sort-of generalize to an arbitrary model M of

a theory T . Let (r1, . . . , rn) be an n-tuple of

elements of M . Look at the set of all formulas

ϕ(x1, . . . , xn) such thatM satisfies ϕ(x1, . . . , xn).

This is the complete n-type of (r1, . . . , rn) with

respect to M .

Unlike the case in field theory, complete n-types

are not usually implied (“generated”) by a sin-

gle formula, but when they are, they are called

principal.
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Next step is to free the notion of n-type from

dependence on the model M . If we have a set

of formulas Φ = {ϕ(x1, . . . , xn)} that is consis-

tent with T , then it’s an n-type. (Sort of like

a polynomial in F [x], looking for a root.) The

type is realized in a model M if there is a n-

tuple (r1, . . . , rn) such that M satisfies all the

ϕ(x1, . . . , xn). It’s omitted if there is no such

n-tuple in M .

The omitting types theorem says that any count-

able collection of non-principal n-types in a count-

able language can all be omitted by some model

of T .

You can imagine that n-types tell us a lot about

possible isomorphisms and automorphisms of mod-

els. The poster child: the theory DLO of dense

linear orderings without endpoints. This is be-

cause there are essentially only very simple types.
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Pretty much the only thing you can say about

(r1, . . . , rn) is what permutation of the subscripts

puts them in monotonically increasing order, and

for which subscripts i and j we have ri = rj .

Anything else about the n-tuple is implied by

this. Especially significant is that no quantifiers

need apply.

And of course, any two countable DLOs are iso-

morphic, and there are lots of automorphisms of

a countable DLO. If you look at the back-and-

forth argument, you’ll see it relies on the limited

repetoire of types.

Also, to hammer the analogy with field theory,

the polynomials r satisfies tells us all about the

isomorphisms and automorphisms.

OK, now specialize to PA. Key thing here is the

overspill lemma. This allows you to code info

about subsets of the standard N into single el-
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ements of a non-standard M . For example, the

set of standard prime divisors of a non-standard

r in M .

If the set you want to code is totally arbitrary,

well, you can’t even express it in the language

of PA, so we want to look at sets that are de-

finable by a formula. Then we can apply the

overspill lemma. Say ϕ(x) is the formula for

the set. Consider the formula ψ(y) ≡ (∃z)(∀x <
y)[ϕ(x)↔ px|z] Here px is the x-th prime. Since

ψ(n) holds for arbitrarily large finite n’s (indeed

all finite n’s), overspill says that it also holds for

some non-standard n. So there is a z such that

ϕ(x) is true iff px|z, for all x < n. In particular

it holds for all finite x, and so z codes the set

via its prime divisors.

More generally, it would be nice to look at sets

of n-tuples defined by an n-type. But we need
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some way to describe the n-type in the language

of PA—we can’t describe an arbitrary set of for-

mulas in the language of PA. So we look at recur-

sive n-types, i.e., sets of formulas whose Gödel’s

numbers form a recursive set.

If we’re lucky, we’ll be able to import a lot of

classical model theory, developed in ZF (or even

naive set theory) into PA, because we can code

it all in PA. And this approach will help us un-

derstand things like extensions of one model by

another, automorphisms, etc.

A couple more notes. First, the prenex normal

form hierarchy shows up all the time in logic. A

variant especially adapted to PA (the arithmetic

hierarchy) is to let ∆0 formulas allow arbitrary

bounded quantifiers, like (∀x < y).

It turns out that a relation is recursively enumer-

able iff it is Σ1. So that’s a nice bridge between
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the model theory of PA and computability the-

ory.

It also turns out that, because of the MRDP

theorem, you don’t even need to allow bounded

quantifiers at the ground level. Well, that’s a

bit sloppy. What I mean is that Σ1 is the same

as ∃1, formulas you get from putting a string of

existential quantifiers in front of a quantifier-free

formula.

2 Post 2

JB: The only books I know are Kaye’s Models of

Peano Arithmetic [6] and Kossack and Schmerl’s

more demanding The Structure of Models of Peano

Arithmetic [9], and I’m trying to read both. But

I have a certain dream which is being aided and

abetted by this paper:
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Ali Enayat, “Standard models of arith-

metic” [2].

Roughly, my dream is to show that “the” stan-

dard model is a much more nebulous notion than

many seem to believe.

One first hint of this is the simple fact that

for any sentence that’s not decidable in Peano

Arithmetic, there are models where this sen-

tence is satisfied and models where it’s not. In

which camp does the standard model lie? We

can only say: “one or the other”. And the same

is true in any recursively enumerable consistent

extension of PA. There are always undecidable

sentences in any such extension, and there are

always models—infinitely many, in fact—where

the sentence is satisfied, and infinitely many where

it is not!
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So, choosing “the” standard model among all

the pretenders—or even this lesser task: find-

ing it up to elementary equivalence—is a her-

culean task, like finding ones way through an

infinite labyrinth of branching paths, where at

each branch deciding which way to go requires

brand-new insights into mathematics, not cap-

tured by our existing axioms. I’m not convinced

it makes sense to talk about the “right” decision

in every case.

Another hint is the Overspill Lemma, used ubiq-

uitously in the study of nonstandard models.

Roughly:

Overspill Lemma: In a nonstan-

dard model of Peano arithmetic, any

predicate in the language of arith-

metic that holds for infinitely many

standard natural numbers also holds
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for infinitely many nonstandard ones.

Corollary: There is no way to write

down a predicate in the language of

arithmetic that singles out the stan-

dard natural numbers.

So, if our supposed “standard” model were ac-

tually nonstandard, we still couldn’t pick out

the nonstandard numbers. The aliens could be

among us, and we’d never know!

But you know all this stuff, and probably have

different interpretations of what it means. I

don’t mainly want to argue about that; I mainly

want to learn more, so I can prove some inter-

esting theorems.

So, thanks for your great introduction! I espe-

cially love the idea of types, which I just learned.

Your explanation was great. Here’s more, in



2 POST 2 12

case anyone is reading:

Types (model theory), Wikipedia.

You didn’t quite get to “recursively saturated

models”, so I pestered Joel David Hamkins (a

logician I know, now at Oxford) and got this

nice explanation, which fits nicely with yours:

Dear John,

Saturation is about realizing types.

The type of an element a in a model

M is the set of all formulas ϕ(x) such

that M satisfies ϕ(a). You can al-

low parameters in a type. For exam-

ple, if you consider the reals as an

ordered field, then any two elements

a and b have different types, since

there is some rational p/q between

https://en.wikipedia.org/wiki/Type_(model_theory)
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them, and a, say, will realize the for-

mula a < p/q, while b does not. This

formula x < p/q is expressible in the

language of fields.

Does R realize all types that it could?

No, because you can write down a

collection of formulas ϕn(x) assert-

ing that 0 < x and x < 1/n. This is

expressible in that language, and it

is consistent with the diagram of the

reals, meaning that this type could

be realized in some elementary ex-

tension of R. The type asserts that

x is a positive infinitesimal number.

So the reals are not saturated.

Indeed, since that type was very easy

to describe, the reals are not even re-

cursively saturated (I usually call it

computably saturated). To be recur-
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sively saturated, a model M must re-

alize every computable type (the for-

mulas, as a set, are a computable set

of formulas) that is consistent with

its diagram.

In general, saturated models are very

thick—they have lots of points of all

the types that one could in principle

have in a model of that theory. Usu-

ally, countable models are not satu-

rated (except when the language is

trivial in some way). To get around

this, the idea of recursive saturation

works very well with countable mod-

els, and this is what is going on in

Kaye’s book.

Hope this helps, and let me know if

I can explain anything more about

it. . .
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Kind regards,

Joel

JB: It’s so much easier to learn stuff by talking

with people than by fighting through a thicket

of logic symbols! But it’s also good for me to

keep reading the books.

3 Post 3

MW: There’s also the book by Hájek and Pudlák,

but I don’t have a copy of that. Thanks muchly

for the Enayat paper, which looks fascinating.

What you and Enayat are calling the “standard”

model of arithmetic is what I used to call “an

ω”, i.e., the ω of a model of ZF. Is that the new

standard terminology for it? I don’t like it, for

philosophical reasons I won’t get into. (Reminds
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me of the whole “interpretations of QM” that

books have to skirt around, when they just want

to shut up and calculate.)

Leaving ZF out of it, a friend in grad school used

to go around arguing that 7 is non-standard.

Try and give a proof that 7 is standard using

fewer than seven symbols. And of course for

any element of a non-standard model, there is

a “proof” of non-standard length that the ele-

ment is standard. I think he did this just to be

provocative. Amusingly, he parleyed this line of

thought into some real results and ultimately a

thesis.

JB: Fun! It reminds me a bit of this:

I have seen some ultrafinitists go so

far as to challenge the existence of

2100 as a natural number, in the sense
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of there being a series of “points”

of that length. There is the obvi-

ous “draw the line” objection, asking

where in 21, 22, 23, . . . , 2100, do we

stop having “Platonic reality”? Here

this “. . . ” is totally innocent, in that

it can easily be replaced by 100 items

(names) separated by commas. I raised

just this objection with the (extreme)

ultrafinitist Yessenin-Volpin during a

lecture of his. He asked me to be

more specific. I then proceeded to

start with 21 and asked him if this

was “real” or something to that ef-

fect. He virtually immediately said

yes. Then I asked about 22, and he

again said yes, but with a percep-

tible delay. Then 23, and yes, but

with more delay. This continued for

a couple more times, till it was ob-
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vious how he was handling this ob-

jection. Sure, he was prepared to al-

ways answer yes, but he was going

to take 2100 times as long to answer

yes to 2100 as he would to answering

21. There is no way that I could get

very far with this.

Harvey M. Friedman, “Philosophical

Problems in Logic”

I have as rather distant acquantainces a cou-

ple of famous ultra-finitists, namely Yessenin-

Volpin and Edward Nelson. I think they’re on

to something but I think it’s quite hard to for-

malize.

Both of them were real characters. Yessenin-

Volpin was a dissident in the Soviet Union, locked

in a psychiatric hospital for what Vladimir Bukovsky

jokingly called “pathological honesty”. Edward
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Nelson was another student of my Ph.D. advi-

sor, Irving Segal. He did ground-breaking work

on mathematically rigorous quantum field the-

ory. Much later he wrote a fascinating paper on

internal set theory, which I’d like to talk about

sometime. In his final years he thought he had

proved the inconsistency of Peano arithmetic!

Terry Tao caught the mistake in the proof, and

Nelson quickly admitted his error. That was

an embarrassing incident, but he came out of it

fine. Crackpots never admit they’re wrong; he

was not like that!

4 Post 4

MW: I wrote: “I don’t like calling the ω of a

model of ZF a standard model, for philosophical

reasons I won’t get into.”

https://projecteuclid.org/euclid.bams/1183539849
https://golem.ph.utexas.edu/category/2011/09/the_inconsistency_of_arithmeti.html
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JB: I like it, because I don’t like the idea of

“the” standard model of arithmetic, so I’m happy

to see that “the” turned into an “a”.

MW: Well, on second look, I see Enayat uses

“ZF-standard” in the body of the paper. I’m

fine with that.

Anyway, back when I was in grad school, I won-

dered whether there were models of true arith-

metic that are not ω’s. Answer: yes. I wrote

up a short note, just for myself. I’m sure the

result is well-known, maybe even in one of the

three books we’ve mentioned. (Also, at this re-

move I no longer remember if I came up with

the argument on my own, or if my advisor gets

the credit.)

JB: What’s “true arithmetic”?

MW: Just the theory of the standard model,

https://michaelcweiss.files.wordpress.com/2020/05/non-omegas.pdf
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i.e., all closed formulas satisfied by N. Now, if

you don’t believe the term “the standard model”

means anything, then I’d have to write a much

longer and more confusing definition.

JB: What’s N? (Most of the time I act like I

know, but when I’m doing logic I admit that

there are lots of different things one could mean

by it.)

I don’t think “the standard model” means any-

thing unless it’s defined. So please give me your

definition!

If I pick a set theory, say ZFC or whatever, I can

prove in there that’s there’s an initial model of

PA (one with a unique embedding in any other),

and I’m happy to call that the “standard model

of PA in ZFC”. Then I can talk about the theory

consisting of all closed sentences in this model.

All that’s fine with me.
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MW: Hmmm. . . It looks like we’re not going to

be able to avoid all philosophy. Fair warning:

my philosophy of math is a mish-mash of intu-

itionism, formalism, and platonism. And I’m

not using those terms in the usual way! But I

think this is a topic for the next post. After

that, I promise we’ll get back to Real Math.

5 Post 5

MW: John, you wrote

Roughly, my dream is to show that

“the” standard model is a much more

nebulous notion than many seem to

believe.

and you gave a good elucidation in post 2 and

post 4. But Id like to defend my right to “true



5 POST 5 23

arithmetic” and “the standard model N”.

Maybe being nebulous isn’t so bad! It doesn’t

wipe out your ontological creds. Like, say, look

at that cloud over there:

HAMLET: Do you see yonder cloud

that’s almost in shape of a camel?

POLONIUS: By the mass, and ’tis

like a camel, indeed.

HAMLET: Methinks it is like a weasel.

POLONIUS: It is backed like a weasel.

HAMLET: Or like a whale?

POLONIUS: Very like a whale.



5 POST 5 24

No one’s saying there’s no cloud. Or that you

can only talk about the cloud if you do so in the

language of ZF set theory!

JB: I dont mind nebulous philosophy. But if

youre going to say “true arithmetic” and “the

standard model N” in mathematical discourse, I

think you need to define them. (That’s for the

“hard core” of mathematical discourse, where

one is stating theorems and conjectures, and

proving them. It’s fine, indeed essential, to say

a lot of vaguer stuff while doing mathematics.)

Imagine this:

POLONIUS: Let G be a Lie group.

If G is connected and simply con-

nected, it’s determined up to isomor-

phism by its Lie algebra.

HAMLET: Sorry, could you remind



5 POST 5 25

me—whats a “Lie group”?

POLONIUS: What?? Every math-

ematician worthy of the name has a

clear intuitive concept of a Lie group!

How can you possibly ask such a ques-

tion?

MW: That reminds me of an incident from grad

school. My friend Mark and I went to ask one of

our favorite profs, Bert Walsh, something about

Riemann surfaces. He began by saying, “Well,

you take your Dolbeault complex. . . ” At the

time, neither Mark nor I knew a Dolbeault com-

plex from a dollhouse. So Mark asked him, “Whats

a Dolbeault complex?” To which Prof. Walsh

replied, “Mark, its exactly what you think it is!”

Since this is a Philosophy-with-a-capital-P post,

let me sling the jargon: do you mean that N is
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nebulous epistemically, or ontologically?

Epistemology—what we know—sure that’s neb-

ulous! There’s a heck of lot we don’t know about

N. Are there odd perfect numbers? An infinite

number of prime pairs? The ABC conjecture!

Even something like the Riemann ζ hypothesis

can be “coded” into the language of arithmetic

with a little work. (Or a lot of work, if you really

mean “written” and not just “convince yourself

it could be written”.)

But ontologically—are there lots of different N’s,

or just one? The very term “non-standard mod-

els of arithmetic” has a double-edged tinge to

it. If there are non-standard models, then there

must be a standard model!

You gave a sort-of justification for the phrase,

“the standard model”, in post 4:
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If I pick a set theory, say ZFC or

whatever, I can prove in there that’s

there’s an initial model of PA (one

with a unique embedding in any other),

and I’m happy to call that the “stan-

dard model of PA in ZFC”. Then I

can talk about the theory consisting

of all closed sentences in this model.

All that’s fine with me.

But do we have to “pick a set theory, say ZFC

or whatever”, to give the proof?

I said my philosophy of math was an incoherent

mish-mash of intuitionism, formalism, and pla-

tonism. Let’s start with intuitionism. I think

I read somewhere that the taproot of Brouwer’s

philosophy (or maybe Poincaré’s) consists in this:

mathematical intuition comes first, axioms later.
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That’s all I’m taking from those guys. But it’s

important. I’m betting you saw the proof that

there is, up to isomorphism, only one model of

Peano’s axioms, long before you learned about

first-order theories and non-standard models and

all that. (It’s basically in Dedekind’s famous

essay, “Was sind und was sollen die Zahlen?”,

paragraph 79.)

Of course, “Peano’s axioms” here isn’t the same

as “PA”. The induction scheme is a single axiom

quantifying over all subsets of N, or as logicians

like to say, it’s formulated in second-order arith-

metic. (Or you can go all the way to ZFC, if you

like.)

Here’s another way to put it: when you say,

“pick a set theory”, I say, “OK, what if I pick the

intuitive set theory of Dedekind and Cantor?”
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I know what you’re thinking. “Has he totally

forgotten about Russell’s paradox? Has he even

studied axiomatic set theory? Does he really

believe that 2ℵ0 has a single correct value, even

if we may never know what it is?”

I’ll admit that oxygen can get a little scarce

far up in V . Do I believe that Woodin cardi-

nals really exist? When the air becomes hard to

breathe, I might want to take refuge in Hilbert’s

gambit, and just claim it’s all a game with sym-

bols. (That’s my formalism ingredient. Again,

a very small part of Hilbert’s program, but im-

portant.)

The Hilbert gambit may be philosophically unim-

peachable, but you know, it just isn’t that much

fun! G. H. Hardy famously refused to accept

that Hilbert really believed it. When watching

Game of Thrones, do you tell yourself the whole
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time, “Those aren’t real dragons, they’re just

CGI.”?

Let’s take the “existence” of non-standard mod-

els of PA in the first place. From a strictly for-

malist standpoint, we’d have to say: “here’s a

proof in ZFC that ∃N(. . .)”, where the ellipsis

is a formalization of “N is a model of the PA

axioms that is not isomorphic to ω”. Of course

nobody does that. We carry out the proof that

such beasties exist in an informal set theory, con-

vinced (with good reason!) that it could (under

duress) be turned into a ZFC proof.

And that’s the platonism part of my philoso-

phy. The outermost layer will always be raw

mathematical intuition. But when I’m swim-

ming inside ZFC, it’s just easier, and more fun,

to imagine that the ZF universe really exists.

I pretend that the axioms are laws of this uni-
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verse. The laws tell me there’s a unique ω, and

(equipped with the usual paraphenalia), that’s

what I mean by “the standard model”. Who

knows, maybe it’s really true.

(Does The Matrix have any scenes of someone

playing video games? Or Greg Egan’s Permuta-

tion City? Can’t remember.)

Now for the kicker. Say we go with the Hilbert

gambit. You need some raw intuition about the

natural numbers just to make sense of it! Any-

one who will swallow “well-formed formula” and

“proof tree” as sufficiently clear concepts, but

balks at “natural number”, has a strange per-

spective, IMO. The Hilbert gambit buys you

something, philosophically, when we’re talking

about full-bore set theory. Not so much with

arithmetic.

Put it this way. You wrote:



5 POST 5 32

for any sentence that’s not decidable

in Peano Arithmetic, there are mod-

els where this sentence is satisfied

and models where it’s not. In which

camp does the standard model lie?. . . [By

the Overspill Lemma] if our supposed

“standard” model were actually non-

standard, we still couldn’t pick out

the nonstandard numbers. The aliens

could be among us, and we’d never

know!

The results you appeal to (the Completeness

Theorem and the Overspill Lemma) are them-

selves theorems of either ZFC, or of informal set

theory. But so is the uniqueness (up to isomor-

phism) of N. Why regard these results differ-

ently?
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On the other hand, if you meant “nebulous”

epistemically, well, just about all math is nebu-

lous in that sense. There’s a lot we don’t know

about—fill in the blank!

6 Post 6

JB: It’s interesting to see how you deploy var-

ious philosophies of mathematics: Platonism,

intuitionism, formalism, etc. For a long time

I’ve been disgusted by how people set up bat-

tles between these, like Punch-and-Judy shows

where little puppets whack each other, instead

of trying to clarify what any of these philoso-

phies might actually mean.

For example, some like to whack Platonism for

its claim that numbers “really exist”, without

investigating what it might mean for an abstrac-
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tion —a Platonic form—to “really exist”. If

you define “really exist” in such a way that ab-

stractions don’t do this, that’s finebut it doesn’t

mean you’ve defeated Platonism, it merely means

you’re committed to a different way of thinking

and talking.

Indeed, I’m so tired of these Punch-and-Judy

shows that I run, not walk, whenever I hear

one roll into town. I like your approach better,

where you seem to treat these different philoso-

phies of mathematics, not as mutually exclusive

factual claims, but as different attitudes toward

mathematics. We can shift among attitudes and

see things in different ways.

But still, I’d rather dodge all direct engagement

with philosophy in this conversation, since that’s

not why I’m interested in models of Peano arith-

metic. Or rather, my interest in models of Peano
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arithmetic is a highly sublimated form of my

youthful interest in philosophy. Instead of try-

ing to tackle hard questions like “do the natural

numbers really exist, what are they, and how do

we know things about them?” I find it easier

and more fun to learn and prove theorems.

But I have an ulterior motive, which I might as

well disclose: I want to soften up the concept

of “the standard model” of Peano arithmetic.

I want to push toward some theorems that say

something like this: “what you think is the stan-

dard model, may be nonstandard for me.”

This is pretty heretical. We’ve all seen this pic-

ture where the standard model is the smallest

possible model, that only has the numbers it

“needs to have”, and any nonstandard model

has extra “infinitely big” numbers, after all the

“finite” ones, coming in patches that look like
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copies of Z. So if your standard model looks

nonstandard to me, it means some number that

seems perfectly standard to you seems “infinitely

big” to me. To me, it lies one of these patches

that come after all the standard numbers. No

matter how many 1’s I subtract from it, I’ll never

get down to 0 as long as the number of 1’s is

standard for me.

What if for really big numbers, it’s hard to tell

if they’re standard or nonstandard?

This sounds crazy, I admit. But have you ever

seriously played the game of trying to name the

largest natural number you can? If you do,

you’ll probably wind up using the busy beaver

function Σ(n), which tells us the most 1’s that

can be printed by an n-state 2-symbol Turing

machine that eventually halts. This function

grows faster than any computable function, and

https://en.wikipedia.org/wiki/Busy_Beaver_game#The_busy_beaver_function_%CE%A3
https://en.wikipedia.org/wiki/Busy_Beaver_game#The_busy_beaver_function_%CE%A3


6 POST 6 37

makes it easy to name immensely large numbers.

For example we know

Σ(7) ≥ 1010
1010

18705353

but this is probably a ridiculous underestimate.

We know

Σ(12) ≥ 3 ↑↑↑↑ 3

which means 33
3...

, where the tower of threes

is very tall. How tall? It has 33
3...

threes in

it, where this tower has 33
3

= 7625597484987

threes in it.

So Σ(12) is fairly large, but the Busy Beaver

function quickly gets much larger, and rockets

into the mists of the unknowable. For exam-

ple, Aaronson and Yedida showed that S(7918)

can’t be computed in ZFC if ZFC together with

a certain large cardinal axiom is consistent:

Scott Aaronson, The 8000th Busy Beaver

https://www.scottaaronson.com/blog/?p=2725


6 POST 6 38

number eludes ZF set theory, May 3,

2016, blog post at Shtetl-Optimized

on a paper by Scott Aaronson and

Adam Yedidia.

Even the game of naming really large computable

numbers leads us into Turing machines and large

cardinal axioms! In a thread on the xkcd blog,

Eliezer Yudkowsky won such a game using an I0

cardinal. For readers not familiar with these, I

recommend Cantor’s Attic, which invites us to

study large cardinals as follows:

Welcome to the upper attic, the trans-

finite realm of large cardinals, the

higher infinite, carrying us upward

from the merely inaccessible and in-

describable to the subtle and end-

lessly extendible concepts beyond, to-

wards the calamity of inconsistency.

https://www.scottaaronson.com/blog/?p=2725
https://www.scottaaronson.com/blog/?p=2725
http://echochamber.me/viewtopic.php?p=3254229#p3254229
http://cantorsattic.info/Upper_attic
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I find it remarkable how the simple quest to

name very large natural numbers brings us up

into this lofty realm! It suggests that something

funny is going on, something I haven’t fully fath-

omed.

“But come on, John”, you may respond. “Just

because there are very big, mysterious natural

numbers doesn’t mean that they aren’t stan-

dard.”

And indeed I have to admit that’s true. I see

no evidence that these numbers are nonstan-

dard, and indeed I can prove—using suspiciously

powerful logical principles, like large cardinal

axioms—that they are standard. But that’s why

this paper excites me:

Ali Enayat, Standard Models of Arith-

metic.

https://www.researchgate.net/publication/281936805_STANDARD_MODELS_OF_ARITHMETIC
https://www.researchgate.net/publication/281936805_STANDARD_MODELS_OF_ARITHMETIC
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It excites me because it relativizes the notion of

“the standard model” of PA. It gives a precise

sense in which two people with two versions of

set theory can have different standard models.

And it points out that assuming a large car-

dinal axiom can affect which models count as

standard!

Anyway, these are my crazy thoughts. But in-

stead of discussing them now (and I’m afraid

they go a lot further), I’d much rather talk about

mathematical logic, and especially the math sur-

rounding Enayat’s paper.

MW: Sounds good! We can save the philosophy

(or at least what I call philosophy) for another

day
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7 Post 7

MW: Our goal for the next few posts is to un-

derstand Enayat’s paper

Ali Enayat,“Standard models of arith-

metic” [2]

JB: Yee-hah!

MW: I’m going to take a leisurely approach,

with “day trips” to nearby attractions (or Se-

henswürdigkeiten, in the delightful German phrase),

but still trying not to miss our return flight.

Also, I know you know a lot of this stuff. But

unless we’re the only two reading this (in which

case, why not just email?), I won’t worry about

what you know. I’ll just pretend I’m explaining

it to a younger version of myself—the one who
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often murmured, “Future MW, just what does

this mean?”

Enayat leads off with what TV critics like to call

table setting. Although some critics sniff con-

temptuously at this, table setting is an Excellent

Thing in a math paper—I wish everyone did it as

well as Enayat does here. For me, it’s instantly

obvious why you’d care about which models of

PA can be the “standard” N in a model of ZF.

But Enayat doesn’t take that for granted. He

also explains why PAZF—statements that are

true in all such models—is recursively axiom-

atizable.

Let’s get some terminology and notation out of

the way first. Enayat doesn’t want to tie himself

down to ZF in particular; you might want to

add some other axioms, like AC, or Con(ZF), or

SM, or some large cardinal axioms. So he uses
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T to stand for some recursively axiomatizable

extension of ZF (maybe ZF itself).

JB: What’s “SM”?

MW: SM is “there exists a model of ZF whose

universe is a set (not a proper class), and whose

elementhood relation is the “real” one in the

“real” universe”. This is the so-called Standard

Model axiom. It’s implied by the weakest of all

large cardinal axioms, the existence of an inac-

cessible cardinal.

JB: Okay, interesting. We category theorists

use Grothendieck universes now and then, like

when studying the “category of all small cate-

gories”. I believe the existence of a Grothendieck

universe is equivalent to the existence of an in-

accessible cardinal (or to be precise, a strongly

inaccessible cardinal). It sounds like the exis-

tence of a Grothendieck universe is precisely the

https://en.wikipedia.org/wiki/Grothendieck_universe
https://en.wikipedia.org/wiki/Inaccessible_cardinal
https://en.wikipedia.org/wiki/Inaccessible_cardinal
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Standard Model axiom. I’ll check that out some-

time. Anyway, go on.

MW: Nowadays, inaccessible pretty much al-

ways means strongly inaccessible. You’re right

about Grothendieck universes: see Shulman’s

paper [14, §8].

If M is a model of T , Enayat says that NM is

a T -standard model of PA. I used to call these

“omegas”, since the domain of NM is the ω of

the model M . Note that if M is a “standard”

model (in the sense I just explained), then NM

is just the standard N.

JB: Hmmm. Though you say “just the standard

N”, even under the assumptions you’re making,

this NM seems to depend on T and on a choice

of standard model M of T . Are you trying to

tell me that it doesn’t really depend on either of

these choices?
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Since I’m trying to sift through all these depen-

dencies, let me start by reminding myself, and

everyone else, that we’re getting NM by first

choosing a recursively axiomatizable extension

T of ZF, and then choosing a model M of T .

Then we define the natural numbers in the usual

way in the theory T , and see what set, with suc-

cessor operation and zero, it corresponds to in

our model. That’s NM .

MW: Exactly. We get the same ω no matter

which T and which M , so long as M is a stan-

dard transitive model. Set-theorists would say

that’s because ω is absolute for standard transi-

tive models. Let me unpack that.

A structure for ZF is a pair (K, ε), where K is a

subclass of V (the “actual universe of all sets”),

and ε is a binary relation on K (“elementhood”).

If ε is the “actual” elementhood relation ∈, then
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we’ve got a so-called standard structure. So you

get a standard structure just by looking at all

the sets of V , and deciding which ones deserve

to be in the club! (K,∈) is a standard model iff

it satisfies all the ZF axioms, natch.

Now, the sets of K could still be deceiving us,

even with a standard model. Say s belongs to

K, but none of its elements do. Even though s

has elements in the “real universe” V , s looks

just like the empty set inside K. To ward off

discombobulations of this ilk, we demand that

K be transitive. This means that if s belongs

to K, so do all of its “real world” elements (i.e.,

x ∈ s ∈ K implies x ∈ K), and so on down for

elements of elements of s, etc.

Incidentally, the transitivity requirement for mod-

els of ZF is much like the initial segment require-

ment for models of PA.M is an initial segment of
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N (with models of PA) iff whenever m < n ∈ N ,

we have m ∈ N . In PA land, people tend to talk

about end extensions: N is an end extension of

M iff M is an initial segment of N . So I guess

you could say that K is transitive iff V is an end

extension of it. But set theorists don’t typically

talk that way.

JB: Thanks! I need to learn a lot more about

absoluteness. I get the basic idea, but I don’t

know any of the theorems that say which things

are absolute. This was borne in on me when at

some point in Enayat’s paper he says “routine

absoluteness considerations show. . . ”. I thought

“Hey, wait a minute!”

I guess it’s sort of obvious that concepts are

more likely to be absolute when they don’t refer

too much to the big wide world around them.

But anyway, as Yogi Berra would say, we can

https://en.wikipedia.org/wiki/Absoluteness
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burn that bridge when we get to it. Continue as

you see fit!

MW: Good intuition. As I put it in my Smullyan

notes, to verify that a set w is really ω, we just

need to crawl around inside it. We don’t need

to climb outside it and wander around the entire

class K. Not so for the power set of ω, where we

have to search high and low to make sure we’ve

gathered all the subsets.

Logicians (specifically, Azriel Lévy) have devel-

oped a machinery to help determine absolute-

ness in set theory. Basically, peruse the quanti-

fiers. If you hear the terms ∆0, ∆1, or Σ1 being

tossed around, that’s what’s going on.

As a side note, late in life Paul J. Cohen rem-

inisced about his discovery of forcing. Here’s a

bit of what he said about his first encounter with

Gdel’s monograph on the consistency of AC and

https://michaelcweiss.files.wordpress.com/2019/03/smullyan.pdf
https://michaelcweiss.files.wordpress.com/2019/03/smullyan.pdf
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CH:

. . . it had an exaggerated emphasis

on relatively minor points, in par-

ticular, the notion of absoluteness,

which somehow seemed to be a new

philosophical concept. From general

impressions I had of the proof, there

was a finality to it, an impression

that somehow Gödel had mathemati-

cized a philosophical concept, i.e., con-

structibility, and there seemed no pos-

sibility of doing this again. . .

But this is a bit of a detour for us, since Enayat’s

paper concerns itself with the non-standard mod-

els of ZF.

“As above, so below.” (A quote from the Emer-

ald Tablet of Hermes Trismegistus, a alchemical
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sacred text.) N seems so cozy and familiar; the

“real universe” V by contrast an enormous, al-

most mythological mystery. Was Hermes right?

Do the goings-on in the upper reaches of V leave

their tell-tale traces in N?

Set theorists have known for quite some time

that this holds for the second-order theory of

N (aka analysis). That’s a way-station between

PA and ZF: you’re allowed to quantify over ar-

bitrary subsets of ω, but not over subsets of the

power set of ω.

The very first thing Cohen did with forcing was

manufacture a model of ZF with a non-constructible

set of integers—that is, a subset of ω that’s not

in Gödel’s class L. But you can also get this

from a large cardinal axiom. Silver and Solo-

vay (independently) showed that if a specific so-

called Ramsey cardinal exists, then so does a
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subset of ω with certain properties—properties

precluding constructibility. Solovay dubbed this

subset 0#. (0# would make a nice day-trip,

maybe after we’ve talked about truth and satis-

faction.)

In a way, Cohen’s result also made use of a large

cardinal. He relied on axiom SM; perhaps the

most natural justification for SM comes from as-

suming there’s an inaccessible cardinal. At the

time, this met with some resistance from the

community, so Cohen also showed how to con-

vert his proof into a purely syntactic relative

consistency argument. (Also you can circum-

vent SM in another way.)

What about the first-order theory PA? Now in

a sense, anytime you assert anything about any

recursively axiomatized theory, you’re stepping

into PA’s jurisdiction. I don’t mean that PA
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will always be able to settle the question (prove

or disprove it), just that it can be expressed in

the language of PA. That’s what’s going on with

Con(ZF), Con(ZFI), etc.

ZF makes its “gravitational field” felt in PA in

other ways, too. Topic for the next post.

JB: Good! That’s one thing I really want to

know about. I was going to mention that “as

above, so below” quote from the Emerald Tablet

when I first mentioned the ramifications of large

cardinal axioms on arithmetic in Post 6. I de-

cided it was too obscure! But I love the idea that

the “microcosm” of the natural numbers may

mirror the “macrocosm” of the set-theoretic uni-

verse. So let’s get into that!

MW: Too obscure!? Wasn’t it an Oprah Book

Club Selection?

https://en.wikipedia.org/wiki/Emerald_tablet
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8 Post 8

JB: So, you were going to tell me a bit how

questions about the universe of sets cast their

shadows down on the world of Peano arithmetic.

MW: Yup. There are few ways to approach

this. Mainly I want to get to the Paris-Harrington

theorem, which Enayat name-checks.

First though I should do some table setting of

my own. There’s a really succinct way to com-

pare ZF with PA: PA = ZF−infinity!

Here’s what I mean. Remove the axiom of infin-

ity from ZF. The minimal model of this is Vω,

the set of all hereditarily finite sets. A set is

hereditarily finite if it’s finite, and all of its el-

ements are finite sets, and all of their elements

are finite sets, and so on down.

https://en.wikipedia.org/wiki/Paris-Harrington_theorem
https://en.wikipedia.org/wiki/Paris-Harrington_theorem
https://en.wikipedia.org/wiki/Hereditarily_finite_set
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(Actually I was sloppy—I should have said, “re-

placing the axiom of infinity with its negation”.

I thank Sridhar Ramesh for pointing this out.)

To show that ZF−infinity (let’s call it ZF¬∞)

is “basically the same” as PA, you have to code

things in both directions. We know how the

integers are coded: von Neumann’s finite ordi-

nals. (Logicians often just say “integers” when

they really mean “non-negative integers”; does

this drive number theorists crazy?)

JB: If any number theorists actually talked to

logicians, it might.

(Just kidding: there are actually lots of cool in-

teractions between number theory and logic [10],

with ideas flowing both ways.)

MW: In the reverse direction, suppose we’ve al-

ready coded the all the elements of {a1, . . . , an}
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as integers {i1, . . . , in}. We just need a way

to code finite sets of integers as single integers.

Lots of choices here, say bitstrings, or using a

product of primes:

{i1, . . . , in} ↔ pi1 · · · pin

(Here pi is the i-th prime, naturally.)

Coding between N and Vω is just the appetizer.

Next comes translating the formal statements

between L(PA) (the language of PA) and L(ZF)

(the language of ZF). This calls for another trick—

something called Gödel’s lemma, which uses the

Chinese remainder theorem in a clever way. (Turns

out you need this just to show that the “i-th

prime” function can be expressed in L(PA).) And

after that the main course: showing that PA can

prove all the (translated) axioms of ZF¬∞, and

vice versa. Kaye devotes a chapter to spelling

out some of the details, off-loading the rest to

https://en.wikipedia.org/wiki/G%C3%B6del%27s_%CE%B2_function
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exercises.

The point of all this? Just that you can do fi-

nite combinatorics in Vω without much gnash-

ing of teeth. The Paris-Harrington principle is a

variant of the finite Ramsey theorem; the Paris-

Harrington theorem says that the Paris-Harrington

principle is unprovable in PA (assuming, of course,

that PA is consistent!) People like to call this

the first “natural” unprovable statement—“natural”

because combinatorialists might give a darn, not

just logicians.

JB: I understand Goodstein’s theorem a million

times better than the Paris-Harrington princi-

ple, and I can easily see how the natural proof

uses induction up to ε0, though I don’t know the

Kirby-Paris proof that it’s unprovable in PA. I

thought this came before the Paris-Harrington

theorem?

https://en.wikipedia.org/wiki/Goodstein%27s_theorem
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MW: Goodstein proved his theorem way back

in 1944 [3]. Kirby and Paris proved its un-

provability (in PA) in 1982, in the paper that

also introduced the Hydra game [8]. Although

I don’t know that you can rely on publication

dates for who knew what when. Anyway, Good-

stein, Hydra, and the Paris-Harrington principle

hang out together like the Three Musketeers. Or

the Four Horsemen of Unprovability, if you in-

clude Gentzen’s result about induction up to ε0,

and how it’s the precise “proof strength” of PA.

Jan van Plato wrote a historical article with

the delightful title “Gödel, Gentzen, Goodstein:

The Magic Sound of a G-String” [16]. He says:

Goodstein had no proof of the inde-

pendence of his theorem from PA,

but it is clear to a careful reader of

his paper that he indeed was con-
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vinced of the said independence. . . . part

of the reason for the early neglect

of Goodsteins theorem lies in a false

modesty. . . . The same attitude is

well displayed by Goodstein’s sub-

servient acceptance of each and ev-

ery comment and criticism of Bernays.

The latter persuaded him to suppress

the claims to independence from the

final version, and one can only spec-

ulate what effect a clear-cut conjec-

ture of independence could have had

on future research.

Getting back to the Paris-Harrington theorem:

the original proof [12] used non-standard models

of PA. Kanamori and McAloon [4] soon simpli-

fied it; the treatment in the recent book by Katz

and Reimann [5] is particularly easy to follow.

That’s the one I want to look at here.



8 POST 8 59

But since you had such fun with ordinals here

(and here and here), I better add that Ketonen

and Solovay [7] later gave a proof based on the

ε0 stuff and the hierarchy of fast-growing func-

tions.(The variation due to Loebl and Nešetřil

[11] is nice and short.) We should talk about this

sometime! I wish I understood all the connec-

tions better. (Stillwell’s Roads to Infinity [15]

offers a nice entry point, though he does like to

gloss over details.)

I figured you must have written about Ramsey’s

theorem at some point, but I couldn’t find any-

thing.

JB: No, I’ve never really understood Ramsey

theory. More precisely, I never understood its

appeal. So whenever I try to read about it, I

become bored and quit. “In any party of six

people either at least three of them are mutual

https://johncarlosbaez.wordpress.com/2016/06/29/large-countable-ordinals-part-1/
https://johncarlosbaez.wordpress.com/2016/07/04/large-countable-ordinals-part-2/
https://johncarlosbaez.wordpress.com/2016/07/07/large-countable-ordinals-part-3/
https://en.wikipedia.org/wiki/Ramsey%27s_theorem
https://en.wikipedia.org/wiki/Ramsey%27s_theorem
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strangers or at least three of them are mutual

acquaintances.” I’m sure there’s something in-

teresting about this. I just haven’t gotten inter-

ested in it.

MW: But you do know, right, it comes in finite

and infinite flavors?

JB: Yes.

MW: Ramsey was doing logic when he discov-

ered his most famous result: he solved a special

case of Hilbert’s Entscheidungsproblem.

You can think of Ramsey’s theorem as a super-

charged pigeonhole principle. If you color an

infinite set of points with a finite number of col-

ors, at least one color paints an infinite num-

ber of points. OK, now color instead the edges

of the complete graph on an infinity of points.

Then there’s an infinite subset of the points,

https://en.wikipedia.org/wiki/Entscheidungsproblem
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such that the complete graph on that subset is

monochromatic. That’s not so obvious! Next

step: again start with an infinite set of points,

but this time color all the triangles (unordered

triples of points). Then there’s an infinite sub-

set of points with all its triangles the same color.

And so on.

For the finite version, we start with a large fi-

nite set of points, and look for a subset of a given

size such that all its points, or edges, or trian-

gles (etc.) have the same color. You’ll find it

if the original set of points is sufficiently large.

How large equals “sufficiently”? That depends

on (a) the cardinality of the things you’re color-

ing (points, edges, triangles, etc.); (b) the num-

ber of colors; and (c) how big you want your

monochromatic set to be.

Now here’s an interesting fact. The finite ver-
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sion of Ramsey’s theorem follows from the in-

finite one by a routine compactness argument.

(Or you can use Kőnig’s infinity lemma.) Ram-

sey himself gave a direct inductive proof for both

versions—so the finite version is a theorem of

PA. Paris and Harrington made just a small

tweak to the finite version. The compactness ar-

gument barely notices the change—the tweaked

version (the Paris-Harrington principle) still fol-

lows from the infinite Ramsey theorem. But the

direct inductive proof comes to a crashing halt!

ZF can prove the Paris-Harrington principle, an

assertion purely about Vω, but ZF¬∞ can’t! Does

this count as the infinite casting its shadow on

the finite?

(Hmmm, I’ve spent so much time table-setting

that now it’s time to walk the dog. We’ll have

to get to the (model-based) proof of the Paris-

https://en.wikipedia.org/wiki/K%C5%91nig%27s_lemma
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Harrington theorem in the next post.)

Addendum: I thought Ketland’s comment de-

served some discussion. First, thanks for the

reference!

Ketland’s comment:

In logic, one says theories A and B

(in disjoint signatures) are definition-

ally equivalent if there are definitional

extensions A+ and B+ which are

logically equivalent. As it turns out,

this definitional equivalence relation-

ship is intimately connected to the

invertibility of the translation maps

between A and B. So theorems of

A can be translated to theorems of

B and vice versa and the translation

functions mutually invert each other.

https://projecteuclid.org/euclid.ndjfl/1193667707


8 POST 8 64

For “finite ZF” and PA, the detailed

definitional equivalence was only re-

cently carefully worked out, though

it’s a folklore result: it involves the

(1937) Ackermann encoding of sets

as numbers. So a binary predicate

intuitively meaning “n is an element

of m” can be defined inside PA (ulti-

mately, just using 0, S,+, and×; but

in fact it needs exponentiation), and

it behaves just like the membership

predicate on finite sets. But, like

much in arithmetic involving coding,

the details are messy!

The equivalence is between these two

theories

1. PA

2. ZF− axiom of infinity + ¬(axiom

of infinity) + the axiom of “tran-
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sitive containment”

The details appeared in

Richard Kaye & Tin Lok Wong, 2007

“On Interpretations of Arithmetic and

Set Theory”, Notre Dame Journal of

Formal Logic.

The folklore result I had in mind was “derivabil-

ity equivalence”. This is a corollary to Prop. 2.1

in the Kaye-Wong paper. Say f : S → T is an

interpretation of theory S into theory T , and

write σf for what we get by translating a for-

mula σ of the S-language into the T -language.

Suppose S ` σ. Then T ` σf . If we also have

an interpretation of T into S, then S and T are

equi-consistent. That’s the situation with PA

and ZF¬∞.

Kaye and Wong are after something stronger.

Ackermann had provided inverse maps between
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N and Vω; Kaye and Wong leverage these to get

interpretations that are truly inverse: (σf )g =

σ, (τ g)f = τ . You don’t get that with the in-

terpretations I sketched—if you code von Neu-

mann’s 3 into N, the result isn’t 3! However, you

have to replace ZF¬∞ with ZF¬∞+TC to get

inverse interpretations, where TC is what they

call the axiom of transitive containment (equiv-

alent to ∈-induction).

Skimming the paper gave me a half-baked idea.

It looks like Kaye and Wong are constructing an

isomorphism between two categories. I wonder

if the “folklore” interpretations give a natural

equivalence?

The paper says, “when the details were finally

uncovered, there were surprises for both authors”.

(Interesting, because Kaye outlined some simi-

lar ideas in exercise 11.4 of his book.) For me,
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the need for the axiom of transitive containment

was unexpected, although in hindsight it makes

perfect sense. When describing hereditarily fi-

nite, I said, “and all of their elements are finite

sets, and so on down.” That’s just a folksy way

of saying “the transitive closure is finite.” If

we can’t ask ω to do some heavy lifting for us,

showing that there is a transitive closure doesn’t

seem to be possible with just ZF¬∞.

9 Post 9

MW: Time to talk about the Paris-Harrington

theorem. Originally I thought I’d give a “broad

strokes” proof, but then I remembered what you

once wrote: keep it fun, not a textbook. Any-

way, Katz and Reimann do a nice job for some-

one who wants to dive into the details, without
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signing up for a full-bore grad course in model

theory. So I’ll say a bit about the “cast of char-

acters” (i.e., central ideas), and why I think they

merit our attention.

The Paris-Harrington theorem says that the Paris-

Harrington principle can’t be proved in PA. The

principle is a small tweak to the finite Ram-

sey theorem. Let’s recall the Ramsey theorem,

briefly. Begin with a finite set of points. Color

the n-element subsets with a finite set of col-

ors. A subset of the points is monochromatic

if all its n-element subsets have the same color.

The Ramsey theorem says we will always have

a monochromatic set of points of any given size,

no matter what n is or how many colors we

use, provided we start with a sufficiently large

set of points. “Sufficiently” depends, of course,

on n and the number of colors and how large a

monochromatic subset we insist on.
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Ramsey first proved his theorem in a quest for

indiscernibles—we’ll hear more about those shortly.

Now for the Paris-Harrington principle: let the

points be numbers. Demand in addition that

the size of the monochromatic subset be greater

than its least element. (So if the smallest ele-

ment is 5, we insist on at least 6 elements.)

Paris and Harrington gave two slightly different

model-based proofs of their theorem. Approach

1: show that PA proves “(Paris-Harrington prin-

ciple) implies Con(PA)”. So by Gödel’s incom-

pleteness theorem, PA can’t prove the Paris-

Harrington principle. Approach 2: show that

there’s a model of PA + not-(Paris-Harrington

principle). Any theory with a model is consis-

tent, so QED.

I’ll concentrate on Approach 2. Before we get

started, let me say just a bit about the model.
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Let N be a model of PA. If N does not sat-

isfy the Paris-Harrington principle, good, we’re

done! Otherwise, we acquire (somehow!) an infi-

nite set B of indiscernibles, a subset of N . Then

we let M be the initial segment determined by

B: all the elements of N that are less than some

element of B. It turns out that M is a model

of PA, but does not satisfy the Paris-Harrington

principle. So now we know the role the indis-

cernibles play, even if we don’t know what they

are yet.

Cast of characters:

• Types.

• Indiscernibles.

• Overspill.

• Truth and satisfaction.
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• ∆0, bounded search, and absoluteness.

• Parameters, aka names.

Types. We talked about these in Posts 1 and 2.

Or rather, we talked about complete n-types in

a structure M , for an n-tuple of elements: all the

formulas ϕ(x1, . . . , xn) that are satisfied (in M)

by the tuple (r1, . . . , rn). Here we’ll be dealing

with partial types—just some of the formulas.

Indiscernibles. If two elements have the same

complete 1-type, then they’re “interchangeable”,

identical twins, doppelgängers—much like two

roots in an extension field with the same irre-

ducible polynomial. Two n-tuples with the same

complete n-type—same idea.

Because PA structures are linearly ordered by<,

an n-tuple (r1, . . . , rn) has a different type from

any of its permutations. (At least if they’re all
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distinct, which we’ll assume for technical rea-

sons.) It makes more sense to work with un-

ordered n-tuples, {r1, . . . , rn}. We’ll say its type

is the type of the ordered n-tuple, when the el-

ements are ordered lowest to highest. So r1 <

· · · < rn.

A set B of indiscernibles has the property that

any two n-element subsets have the same type.

So B is like the Borg: these dozen Borg are just

like those dozen Borg. Or bosons. (Except I

guess you can’t order Borgs, or bosons.)

That last paragraph was a little vague. To be

more specific, if we have set Φ of formulas, then

B is (order) indiscernible with respect to Φ if

for every ϕ(x1, . . . , xn) in Φ, the truth-value of

ϕ(r1, . . . , rn) is the same for all sets {r1, . . . , rn},
provided only that {r1, . . . , rn} is a subset of B

and r1 < · · · < rn.
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How do we get ahold of indiscernibles? Let’s

start with a single formula ϕ(x1, . . . , xn). If

ϕ(r1, . . . , rn) is true, we color {r1, . . . , rn} blue,

otherwise red. (Remember that r1 < · · · < rn.)

So we’re coloring n-element sets with 2 colors,

and Ramsey’s theorem kicks in. With k formu-

las voicing their opinions, the true/false results

give us 2k colors. So we can get an infinite set

B that is indiscernible with respect to any fi-

nite number of formulas. Stay tuned—the indis-

cernibles have a couple more plot twists coming

up.

Overspill . You talked about this in Post 2. In a

way, it’s what inspired my friend David to ask,

“What if seven is non-standard?”

And it’s how we leap over the hurdle of the

last section. We’re going to need indiscernibility

with respect to an infinite number of formulas.
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OK, use the finite Ramsey theorem for a non-

standard number of formulas. If we set things up

right, this will include all the standard formulas

we care about.

For example, we could look at all formulas with

Gödel numbers less than a non-standard c. What’s

a formula with a non-standard Gödel number?

It’s just a non-standard number satisfying a cer-

tain first-order formula, namely the one that en-

codes the assertion “n is the Gödel number of a

well-formed formula”. In other words, we use

the codability of syntax into PA. We already

know that PA is “basically the same” as ZF¬∞;

doing syntax “inside PA” is a trivial corollary.

So do we now have all the indiscernibles we need?

First we have to clear another hurdle. Our defi-

nition of indiscernibles talked about truth-values.

Not just syntax, also semantics. That opens
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Pandora’s box.

Truth and satisfaction. Before I get into this, I

have to make two observations.

• Gödel’s two most famous results: the com-

pleteness theorem, and the incompleteness

theorem.

• Tarski’s two most famous results: the un-

definability of truth, and the definition of

truth.

How neat is that? (Of course, you know that

neither of these antitheses are really contradic-

tory.)

I am also obligated, by virtue of having taken

a course in Western Civilization in college, to

include this quotation:
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What is Truth?

Kaye does me one better. After citing Tarski’s

undefinability theorem, he says:

(thus: we can’t get any satisfaction!)

I was disappointed not find an index entry for

Mick Jagger.

Anyway, although the property “N satisfies the

closed formula ϕ” cannot be expressed in L(PA),

one can express satisfaction for formulas of “bounded

complexity”. Complexity can be bounded in

various ways. Here, we need the satisfaction

predicate for so-called ∆0 formulas. Kaye spells

out the tedious details (for this and much more)

in a chapter that leads off with the words, “This

is the chapter that no one wanted to have to

write. . . ”
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∆0, bounded search, and absoluteness. OK. Let’s

say N is a model of PA. We aim eventually to

construct an initial segment M of N that will

also be a model of PA. “As above, so below”:

when does truth in M reflect truth in N?

To state a precise question: suppose ϕ(x1, . . . , xn)

is a formula in L(PA), and (a1, . . . , an) is an n-

tuple in M . When does ϕ(a1, . . . , an) have the

same truth-value in M and N? This is issue of

absoluteness.

Here’s an important special case which guaran-

tees absoluteness: if all the quantifiers in ϕ are

bounded—of the form ∀x < y or ∃x < y—then

we say ϕ is ∆0. In that case, ϕ(a1, . . . , an) will

be absolute between M and N for any n-tuple

(a1, . . . , an) belonging to M . That is, if M is an

initial segment of N !

We talked, briefly, about ∆0 formulas and abso-
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luteness for ZF. There, the initial segment condi-

tion was called “transitivity”. A bounded quan-

tifier looks like ∀x ∈ y or ∃x ∈ y. I said some-

thing like, with bounded quantifiers you can just

crawl around inside the sets under discussion,

you don’t have to search high and low through

the whole universe.

Well, it’s pretty much the same with PA. If ϕ(x)

is already absolute betweenM andN , then (∀x<
y)ϕ(x) is too. Note that the free variable in

(∀x<y)ϕ(x) is y, so we have to show thatM and

N give the same truth-value to (∀x<a)ϕ(x), for

any a in M . But we’ve bounded the search to

elements of M ! So what’s going on in the rest

of N can’t make a difference.

So here’s how the construction almost goes. Us-

ing the tricks already mentioned, acquire a sub-

set B of N that is indiscernible for all standard
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∆0 formulas. Let M be the set of all elements of

N that are less than some element of B. Why

should we think that M might be a model of

PA?

The heart of the matter: the Least Number

Principle for M . That’s just induction in a fancy

costume. Let’s say we have a formula ϕ(x); the

Least Number Principle says that if there’s any

a making ϕ(a) true, then there’s a least such a.

If ϕ(x) is ∆0, just say “absoluteness!” and you’re

done. Suppose there’s some a in M making ϕ(a)

true, in M . By absoluteness, this same a makes

ϕ(a) true in N . Since the Least Number Prin-

ciple holds in N , there’s a least such a in N ,

which of course is no greater than the a in M

we started with. Well, M is an initial segment

of N , so this least such a is also in M , and it’s

the least a making ϕ(a) in M , again by abso-
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luteness.

But what if ϕ(x) is more complicated? For ex-

ample, ∀y∃z ψ(x, y, z)? (Assume ψ(x, y, z) is

∆0.)

The trick is to use the indiscernibles in B to

bound the searches. B is unbounded in M (or

to sling the lingo, cofinal). Instead of saying

∀y∃z . . ., we can say

(∀b1)(∀y < b1)(∃b2 > b1)(∃z < b2) . . .

with b1, b2 ∈ B. Take a moment to see why:

if there’s a z, there’s a b2 greater than that z.

Likewise, looking at all the y’s amounts to the

same thing as looking at all pairs y < b1.

Now we use the indiscernibility of the b’s. I like

to think of the indiscernibles as the “sliders” in

this picture:

· · ·x · · · · · · ← b1 → · · · · · · y · · · · · · ← b2 → · · ·
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Not that you literally slide b1 and b2 left and

right, but you can choose any two bi and bj with

bi < bj to replace them.

So we can just pick two specific b’s, and not

quantify over them at all! We end up with this:

(∀y < b1)(∃z < b2) . . .

That’s a ∆0 formula, so we cry “absoluteness!”

and go home.

Perhaps you smell a rat. I’ve gotten all this

way, without using the Paris-Harrington prin-

ciple. Not just that: the whole idea was that

even if N satisfied the Paris-Harrington princi-

ple, M wouldn’t. So far I’ve been giving reasons

why M should reflect N . But the denouement

depends on M not reflecting N in one crucial

aspect. Time for the final plot twist.

Parameters, aka names. I’ve pulled a fast one.
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When I talked about a formula ϕ(x1, . . . , xn),

I ignored the possibility that it might contain

some constants as well as the variables x1 to xn.

Let’s say we have some constants c1, . . . , ch. So

ϕ really looks like this: ϕ(x1, . . . , xn, c1, . . . , ch).

Typically, when one talks about n-types, one

permits constants. Not only that, but one usu-

ally enriches the language to include a constant

for every element of the domain of the struc-

ture. People often call these sort of constants

names, and when used in a formula, parame-

ters. (You may recall that when your friend Joel

David Hamkins gave a précis of type in a model

in Post 2, he allowed for parameters.)

You might have noticed I’ve already used pa-

rameters. When I rewrote ∀y∃z . . . as (∀y <

b1)(∃z < b2) . . ., b1 and b2 are parameters. Also,

parameters are permitted in the induction ax-
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ioms. That means that the argument I just gave

doesn’t quite work. We need to strengthen our

indiscernibles to so-called diagonal indiscernibles.

And we’ll need the Paris-Harrington principle to

get these—the plain old Ramsey theorem just

won’t cut it.

For diagonal indiscernibles, the truth-value of

ϕ(r1, . . . , rn, c1, . . . , ch) is the same no matter

what the r’s, provided that {r1, . . . , rn} is a sub-

set of B, that r1 < . . . < rn, and that all the c’s

are less than all the r’s. (And of course that ϕ

belongs to the given set Φ of formula—∆0 for-

mulas in this case.)

With the new requirement (all the c’s less than

all the r’s) the proof that M is model of PA goes

through without a hitch. The Paris-Harrington

principle also has a new requirement: the num-

ber of indiscernibles must be greater than the
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least indiscernible. You can sort of see that the

two conditions might be related. But I won’t lie:

an intricate trusswork of combinatorics forms

the bridge between the two demands.

Time to wrap things up. SayN is a non-standard

model of PA satisfying the Paris-Harrington prin-

ciple. Putting all the characters above into the

same scene, they conjure up a new character—a

nonstandard number w. This w is a “witness”

to the Paris-Harrington principle; that is, the

set of numbers less than w is sufficiently large

to contain the indiscernibles we need, guaran-

teed! Not only that, w is the least such witness.

And these indiscernibles call forth the model M .

(Some parameters play a role, but I’m just giv-

ing the sense of the plot.) Most important: all

elements of M are less than w. (Just review how

we went from w to indiscernibles to M .)



10 POST 10 85

Does M satisfy the Paris-Harrington principle?

Nope—if it did, it would have its own w0, the

least witness to the Paris-Harrington principle!

And w0 would be strictly less than w. But an ab-

soluteness argument shows that “the least wit-

ness to the Paris-Harrington principle” must de-

scribe the same number in both M and N . So

M is a model of PA + not-(Paris-Harrington

principle), and we can ring down the curtain.

10 Post 10

JB: So, last time you sketched the proof of the

Paris-Harrington theorem. Your description is

packed with interesting ideas, which will take

me a long time to absorb. I’d like to ask some

questions about them. But for starters I’d like to

revert to an earlier theme: how questions about
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the universe of sets cast their shadows down on

the world of Peano arithmetic.

It seems a certain class of logical principles let

us construct fast-growing functions f : N → N:

functions that grow faster than any function we

could construct without assuming these princi-

ples. And these logical principles are also con-

nected to large countable ordinals. For exam-

ple, there’s a simple theory of arithmetic called

PRA, for ‘primitive recursive arithmetic’, that’s

only powerful enough to define primitive recur-

sive functions. There are various tricks for cod-

ing up countable ordinals as natural numbers

and defining the operations of ordinal arithmetic

using these code numbers, but PRA is only strong

enough to do this up to ωω. So, we say it has

proof-theoretic ordinal ωω. Corresponding to

this limitation (in some way I don’t fully under-

stand, but can intuit), there are functions that

https://en.wikipedia.org/wiki/Primitive_recursive_arithmetic
https://en.wikipedia.org/wiki/Primitive_recursive_function
https://en.wikipedia.org/wiki/Primitive_recursive_function
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grow too fast to be described by PRA, like the

Ackermann function.

There’s a whole hierarchy of more powerful theo-

ries of arithmetic with larger proof-theoretic or-

dinals, nicely listed here;

Wikipedia, Ordinal analysis.

Presumably theories with larger proof-theoretic

ordinals can define faster-growing functions. What’s

the precise connection? I know that you can use

countable ordinals to index fast-growing func-

tions, via the fast-growing hierarchy, so there’s

an obvious conjecture to be made here.

Anyway, the time we reach PA the proof-theoretic

ordinal is ε0. There are still functions that grow

too fast for PA, like Goodstein’s function:

Andrés Caicedo, “Goodstein’s Func-

https://en.wikipedia.org/wiki/Ackermann_function
https://en.wikipedia.org/wiki/Ordinal_analysis
https://en.wikipedia.org/wiki/Fast-growing_hierarchy
https://en.wikipedia.org/wiki/Goodstein%27s_theorem#Sequence_length_as_a_function_of_the_starting_value
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tion” [1]

What does “too fast for PA” mean? I mean it’s

a partial recursive function that PA can’t prove

is total.

I know Goodstein’s function is somehow related

to Goodstein’s theorem, and you seemed to say

that’s in turn related to the Paris-Harrington

theorem. So I’m wondering: is the Paris-Harrington

principle provable in some theory of arithmetic

that has proof-theoretic ordinal a bit bigger than

ε0?

If so, what is this ordinal?

Here’s another way to express my puzzlement.

The Paris-Harrington principle is connected to

a fast-growing function. Wikipedia says:

The smallest numberN that satisfies

https://ncatlab.org/nlab/show/partial+recursive+function
https://en.wikipedia.org/wiki/Goodstein%27s_theorem
https://en.wikipedia.org/wiki/Paris%E2%80%93Harrington_theorem#Paris%E2%80%93Harrington_theorem
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the strengthened finite Ramsey theo-

rem is a computable function. . . , but

grows extremely fast. In particular

it is not primitive recursive, but it is

also far larger than standard exam-

ples of non-primitive recursive func-

tions such as the Ackermann func-

tion. Its growth is so large that Peano

arithmetic cannot prove it is defined

everywhere, although Peano arithmetic

easily proves that the Ackermann func-

tion is well defined.

What ordinal indexes the growth rate of this

function, via the fast-growing hierarchy?

MW: Let me first ask you about your phrasing:

“Presumably theories with larger proof-theoretic

ordinals can define faster-growing functions.” By

“define”, do you mean, “has a formula for, and
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can prove that the formula defines a total func-

tion”? I’d use “define” to mean just the first

clause. I’d like to keep separate what we can

prove from what we can express.

JB: I was being vague, mainly because I don’t

really know what I’m talking about. But okay,

let’s say I meant “has a formula for, and can

prove that the formula defines a total function”.

That sounds like what I should have said.

MW: I think it’s also time to mention the Church-

Kleene ordinal ωCK
1 , which looks down from a

lofty height on all the proof-theoretic ordinals.

Past ωCK
1 , it seems we don’t even have a de-

cent way to talk about the ordinals (formally in

L(PA)), let alone prove things about them. (Or

so I’ve read.)

I don’t know proof theory nearly as well as model

theory. That’s something I hope to remedy as
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this series continues. Let me say a few things

I’m fairly confident about, plus some guesses.

Things can get finicky, especially low down among

the ordinals—many of the different choices seem

to “wash out” by the time we get to ε0. You

mention PRA, the theory of primitive recursive

functions. This theory has no quantifiers! In-

stead, it has a function symbol for every prim-

itive recursive function. I’d rather think about

IΣ1, which is like Peano arithmetic, except we

have the induction axioms only for Σ1 formu-

las. (Recall that a formula is Σ1 if it consists

of an existential quantifier in front of a formula

with only bounded quantifiers.) A modeler of

PA would find this an attractive theory: Σ1 for-

mulas are upwards absolute between end exten-

sions.

Now, IΣ1 and PRA both have the same proof-
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theoretic ordinal: ωω. Does this mean they’re

“basically the same”? My guess is yes, at least

in the sense of “mutual interpretability” (like

PA and ZF¬∞). Maybe they’re even synony-

mous [17]! (Or what Ketland called “definition-

ally equivalent”.)

But what, exactly, is the meaning of “proof-

theoretic ordinal”? (Let’s stick with theories

in the language of PA.) This could mean: the

smallest recursive ordinal α for which the the-

ory cannot prove the validity of transfinite in-

duction up to α (and hence can prove it up

to any β < α). (That’s the definition in the

Wikipedia article on Ordinal analysis.) Or it

could mean: the smallest α for which trans-

finite induction up to α (plus some very ba-

sic stuff) proves the consistency of the theory.

(That’s the definition in Rathgen’s “Art of Or-

dinal Analysis” [13], a paper you’ve cited in the

https://en.wikipedia.org/wiki/Ordinal_analysis
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past.) For “very basic stuff”, Rathgen chooses

ERA=Elementary Recursive Arithmetic, a sub-

system of PRA.) I imagine you prove the equiv-

alence of these two definitions—whenever they

are equivalent—using arguments patterned af-

ter Gentzen’s proofs for ε0.

Then we have the various function scales: the

Hardy, Wainer (aka fast-growing), and slow-growing

hierarchies. You might want to say that the

proof-theoretic ordinal is the smallest α for which

the theory cannot prove that Hardy’s hα is to-

tal (and hence it can prove that hβ is total for

any β < α). I’ve seen that definition in various

places; here’s a stack-exchange question about

it.

Here’s a puzzle for you (for me too): glance at

the definition of the Ackermann function. Say

the two-place version. As the Wikipedia arti-

https://math.stackexchange.com/questions/2334724/small-proof-theoretic-ordinals
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cle notes, the value for A(m,n) depends values

of A(m∗, n∗) with (m∗, n∗) preceding (m,n) in

the lexicographic ordering—looks like a job for

transfinite induction up to ω2! Yet the Acker-

mann function outpaces every primitive recur-

sive function, and as we’ve read, PRA handles

induction up to any ordinal less than ωω.

Things are more clear-cut for ε0. First off, Con(PA),

induction up to ε0, the Paris-Harrington princi-

ple, the generalized Goodstein theorem, a ver-

sion of the Hydra theorem, and the Kanamori-

McAloon principle (don’t ask) are all equiva-

lent over PA. The Hardy and Wainer (aka fast-

growing) hierarchies “catch up” to each other,

so it doesn’t matter which we use to define sub-

ε0 growth rate. The Buchholz-Wainer theorem

says that a function is provably recursive if and

only if it appears in the Wainer (or Hardy) hi-

erarchy somewhere before level ε0.
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So to answer your question about growth rates:

the Paris-Harrington function (like the Good-

stein function) belongs to level ε0 of the fast-

growing hierarchy (also the Hardy hierarchy).

OK, what about the proof-theoretic ordinal of

the theory you get by adding any of these to

PA? I’m not so sure. It should be the “next”

proof-theoretic ordinal after ε0, but I’m pretty

sure that’s not ε0 + 1: once you’ve got transfi-

nite induction up to ε0, it’s no sweat to push it a

bit further. My first guess would be ωε0 , except

that’s equal to ε0! Maybe ωε0+1? Maybe ε1?

It might be fun/useful to think through these

matters out loud sometime.

JB: In my readings I got the impression that the

two definitions of proof-theoretic are not equiv-

alent. I thought that the “smallest α for which

transfinite induction up to α (together with some
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basic stuff) proves the consistency of the theory”

definition was a naive one inspired by Gentzen’s

proof of the consistency of PA using induction

up to ε0. I thought the “smallest α for which

the theory cannot prove the validity of transfi-

nite induction up to α” definition was the one

that people actually use these days.

For example, people say that ZFC has a proof-

theoretic ordinal, some countable ordinal below

the Church-Kleene ordinal that’s so large no-

body has figured out how to talk about it. But

I’ve never seen anyone claim that you could prove

the consistency of ZFC using transfinite induc-

tion up to some whopping big countable ordinal

(together with some other basic stuff). If this is

true I’d be very interested!

I’ll ask on mathoverflow.

MW: My impressions track yours pretty closely.

https://mathoverflow.net/questions/333514/ordinal-analysis-and-proofs-of-consistency
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Although I don’t know that any one definition

has driven all others off the field. As long as

there are thesis topics to assign and papers to

write, people will investigate all conceivable def-

initions, and try to suss out how they relate.

I mentioned my favorite definition above, which

coincidentally is the one Noah Schweber men-

tions in his answer to your mathoverflow ques-

tion:

The computational proof-theoretic or-

dinal |T |comp of T is the supremum

of the computable ordinals α such

that there is some notation n for a

which T proves is well-founded.

As he points out, the “consistency” definition

has some rather serious problems. Pohler’s Proof

Theory says:

https://link.springer.com/book/10.1007/978-3-540-69319-2
https://link.springer.com/book/10.1007/978-3-540-69319-2
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. . . it is tempting to regard the or-

der type of the shortest primitive re-

cursive well-ordering which is needed

in a consistency proof for a theory

T as characteristic for T . That this

idea is malicious was later detected

by Georg Kreisel. . .

who cooked up a way to make the “consistency”

ordinal ω for any “reasonable” theory. (Noah

Schweber says “pathological” and “appropriate”

instead of Pohler’s “malicious” and “reasonable”.

I’m guessing his “pathological” example is the

same one that Pohler describes, but I haven’t

checked.)

By the way, you seem skeptical that one could

prove the consistency of ZF using induction up

to some countable ordinal (on top of some basic

stuff). I can’t say I have an intuition on this,
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one way or the other. Asserting the consistency

of any recursively axiomatizable theory is, after

all, a purely combinatorial (i.e., syntactic) claim.

Con(ZF) is but a small pale shadow, cast down

into the finite realm by the magic mountain of

V .

I’m mostly curious about how the computational

proof-theoretic ordinals relate to the growth-rate

hierarchies. Maybe we’ll revisit this when I’ve

spent more time boning up on proof theory.

JB: Yes, let’s move on to Enayat! I suspect we’ll

loop back to these themes at various points.
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